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ABSTRACT

We study a model equation for the elongation of filaments or sheets of
polymeric liquids under the influence of a force applied to the ends.
Mathematically this equation has the form of a nonlinear Volterra integro-
differential equation with the kernel given by a finite sum of exponentials.
The unknown function denotes the length of the filament or, respectively, the
thickness of the sheet. We study the equation both analytically and
numerically. The force is assumed to converge to zero exponentially as
t + -- and to vanish identically after a finice time to. It is shown that
under this condition there is a unique solution which approaches a given limit
as t - ; moreover, the solution also has a limit as t + +-. A numerical

scheme is analyzed and convergence uniformly in t is established.
Particular attention is paid to the dependence of solutions on a parameter
0, which corresponds to a Newtonian contribution to the viscosity. It is

proved that solutions converge uniformly in t as p + 0, and that the
convergence of the numerical scheme is also uniform in i.
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SIGNIFICANCE AND EXPLANATION

The evolution of the shape of a filament or a sheet of a polymeric liquid

subjected to an external force f(t) is described by the equation

t) + ft. a(t-s)'Y3 (t) - y(s))ds = f(t)y (t)
y 2(s)

where y denotes the length of the filament or the thickness of the sheet,

respectively, and V is a Newtonian contribution to the viscosity which can

either be positive or zero. The exponent a depends on the physical

situation under study.
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We regard the length at t = - as known and investigate its evolution. It

is shown that for a physically realistic class of functions f there exists a

unique solution, and that the length approaches a new stationary value at

t = - (wl.ich is in general different (greater) from the value at t = -- ).

Numerical calculations are performed for several functions f. For the kernel

a we choose values given in the literature for polyethylene at 1500C. Our

computations show in particular that the solutions do not significantly depend

on p unless p exceed; 10 000 Nm- 2sec.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



A NONLINEAR VOLTERRA INTEGRODIFFERENTIAL EQUATION
DESCRIBING THE STRETCHING OF POLYMERIC LIQUIDS

* **

P. Markowich and M. Renardy

1. Introduction

In this paper we consider a mathematical model describing the stretching

of a filament or a sheet of a molten polymer under a prescribed force f.

These two physical situations are illustrated by the following diagrams:

(1) if f

(2)

/

-f <--7 / - -f

-f

Our model is based on the following physical assumptions:

(i) The polymer satisfies the "rubberlike liquid" constitutive relation

(51.

(ii) The strain and stress tensors are independent of spatial coordinates,

and, in particular, inertial forces are neglected (for a model that

includes inertial forces see [9]).

(iii) The molten polymer is incompressible.

This material is based upon work supported by the National Science
Foundation under Grant No. MCS-7927062 and by the Austrian Ministry for
Science and Research.

Supported by Deutsche Forschunqsqemeinschaft

Sponsored by the United States Army under Contract No. DAAG2q-80-C-0041.



Under these assumptions the problem is described by the equation (for a

derivation see [6), [91):

(1.1) Py(t) + ft a(t-s)( t ) - y(s))ds = f(t)y'(t), -- < t <
y (s)

where y denotes the length of the filament or the thickness of the sheet,

resp., p is a nonnegative material constant modelling a Newtonian

contribution to the viscosity, which may physically come from a solvent or

fractions of low molecular weight, and the memory kernel a has the form

N -Xu

(1.2) a(u) = K Ke

with positive constants K, A£. f denotes the force acting on the ends of

the filament, or -f denotes the force acting on the edges of the sheet,

1
resp. The exponent a is 2 for the filament and I for the sheet (for our

2

mathematical analysis, we assume 0 < a < 3). The difference comes from

geometric reasons: If f were denoting the force per unit area, a would be

I for both cases. Due to the incompressibility, however, the area on which

f is acting depends on y.

Although this has no significance to the mathematical analysis, the

physical relevance of the model is limited to f ) 0 for the filam-nt and

f 4 0 for the sheet. If e.g. one attempts to compress the filament, then

buckling rather than contraction would be observed, and this instability is

not described by our equation.

A problem related to ours was investigated by Lodge, McLeod and Nohel

[6). They assume y(t) is given for t < 0, it is nondecreasing (which

implies but does not follow from f ) 0), and y(--) = 1. They then assume
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f = 0 for t > 0 and study the elastic recovery. For a class of kernels

a and functions F(y(t), y(s)) under the integral, which include those

specified above, they prove the existence of a unique solution to the history

value problem, which is nondecreasing for t > 0 and converges to a limit

y(-) > 1. Their proofs rely on monotonicity arguments, and they also prove

that the solutions depend monotonically on the prescribed history and the

parameter p. One of the main points in their analysis is the behavior of

solutions near V = 0, in this case the solutions become discontinuous at

t = 0, and they face a singular perturbation problem with a boundary layer.

On the basis of these results Nevanlinna (8] used an implicit first order

Euler-type discretization scheme for (1.1). He proved that this

discretization preserves all the monotonicity properties, and that the global

error is O(h7) for any y < I uniformly with respect to I, e [0,U] and

t L [t, ), to > 0. It was not shown, however, that the scheme is first order
0 0

accurate uniformly in t and V, i.e. that the global error is O(h).

In our analysis, we prescribe a continuous function f(t), which

satisfies lim e- tf(t) = 0 for some a > 0, and f = 0 for t e [t 0,=).

We prove that, for any such f, problem (1.1) has a unique solution y(t)

satisfying lim y(t) = 1. This convergence is exponential, moreover, the
t--

solution exists globally in time, and converges exponentially to a constant

-0t
y(-) > 0 as t + -, more precisely, we have lim e (y(t) - 1) =

tat

lim e at(y(t) - y(-)) = 0. This holds for any Uj > 0. The solution depends

continuously on U in a norm stronger than the L -norm (more specifically,

-3-



in an exponentially weighted L -norm, which incorporates the asymptotic

behavior as t + ±+), even at ) = 0. No boundary layer occurs, since the

solution for p = 0 has the correct asymptotic behavior as t + ic. Our

proofs are mainly based on the implicit function theorem and Liapunov function

arguments.

In the second part of the paper we discuss the computational solution of

(1.1). Like Nevanlinna, we use a first order implicit Euler-type

discretization with uniform mesh size h, after having cut the interval

[- ,0] at t-m. In the convergence proof, we use a discrete analogue of

exponentially weighte6 L -spaces (infinite sequences converging

exponentially on both sides). Choosing a space with an exponential weight

(a- E) ItI
given by e , 0 < E < a, we obtain an error estimate of the form O(h)

+ o(e ) in the norm of that space, moreover, this holds uniformly in

p E [0,-) and E e [0,E0 1, E0 < a. The main tool in the proof is Keller's

[3] nonlinear stability concept.

Our numerical results imply that the solution y(t,u) does not differ

significantly from y(t,0) on [-w,] if p is smaller than a certain

fairly large number. If p exceeds this number, then the solutions change

considerably.

The paper is organized as follows: In chapter 2 we present the

analytical results, chapter 3 concerns the discretization procedure, and the

cnmPutations are reported in chapter 4.

-4-



2. Analysis of the Continuous Problem

Solutions for Small Forces

N -X.u
Let us consider equation (1.1), where 0 < a < 3, a(u) K.e

i=1

and p > 0. This equation can be reduced to a system of ODE's in two ways.

We set

g.(t)- ft K e' 2 1 s
y 2y (a)

-X. (t-s)

h (t) = ft Kie 1 y(s)ds

Then (1.1) reads
I N ( % 3 _ h

i== - - ( I g y h f(t)y)

K.
(2.1) g + --2

y

h x = -hi + K i y

h. -h.+

2 hi i
if 6i = -S we obtain

N

i=1 1

-- -i Y - 6.) -. f(t)y -

(2.2) = x Y + K. + Y f * t

1 1 ~iy -

J

6= -)Xi6 i + Ki 4 - 6i 2 (y. - 6.) - -- c f t-i

i

Both forms (2.1) and (2.2) will be used in the followinq.

K.
i

Clearly, if f = 0, then y = 1, qi hi = . is a stationary

solution.



LEMMA 2.1. The 2N + 1-square matrix setting up the right hand side of the

linearization of (2.1) (or (2.2)) at the stationary solution y = 1, gi = hi

K.

has zero as a simple eigenvalue. All other eigenvalues have negative
1

real parts.

PROOF: Clearly, (2.1) and (2.2) give the same eigenvalues. Let us consider

(2.1). The linearization is set up by the following matrix

N 3K_ 3K. 1 1 1 1 1 1

i=I 

-2K -I 0 . . . 0 0 0 . . . 0

-2K 2  0 -X . • 0 0 0 . . . 0

-2K 0 0 • 0 0 . . . 0A=N n

K 1 0 0 . . . -X I' " . 0

K2  0 0 . 0 - 2 . .0

KN  0 0 . . . 0 0 0 . X "n

This yields the characteristic polynomial

3K 3K
P(X) (-X. - X) (-I - X -

i V1

Thus N eigenvalues are give by A = -A., the remaining N + I eigenvalues1

are the zeros of the last factor. Obviously one of these is zero, and it is

simple. It remains to be proved that all the remaining roots have negative

real parts. Consider the equation

3K. 3K,
_ [ __! _ t -0 .. - V - -

-1
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The left hand side has poles at ' = -hi , and its sign is positive for

X + -X + and negative for X + - -. For convenience, let the X,'s be
1 3 .

ordered such that X < X2 <...< X. It follows that there is a root in each

interval (-Xi , -X i+) and another root between -X and --. Hence all

non-zero roots are real and negative.

We want to prove the existence of solutions for small f using the

implicit function theorem. The spaces in which we apply this theorem are

defined in the following:

DEFINITION 2.2. Let Y ,n = {g e Cn(R, R)I lim e altg (k)(t) = 0 for
itl+o

k = O,1,...,n}. A natural norm in Y0,n is

n altl (k
gu =I sup le g (t)l

k-0 teR

Moreover, let X ' n = ff e cn(R, R)I lim e altf (k)(t) = 0 for k =1...,n,
It I+

f(-) such that lim e t(f(t) - f(-)) = lim e- tf(t) = 0}

t+W t+-=

A natural norm in X c n is

n lt! (k) -ta

gfh = n sup le F (t)I + sup le- tf(t)l + suple t(f(t) - f(o)I
k=1 teR t<O t>0

+ If(-)l

THEOREM 2.3. Let Y denote (y,y,y 2,...Y,6,62,....6 N ) and
K I K N K 1 KN

0. 1 Let a > 0 be small enough (smaller than all

the absolute values of the non-zero eigenvalues of A). Then the following

holds: If f e Y ,n has sufficient small norm, then (2.2) has a solution

Y satsfyig Y Y @ x'n~l o,n+1 )2N.
Y satisfying Y - Y e x x (Y 2N. Y depends smoothly on f.

-7-



Proof: When we put Y - Y0 = Z, equation (2.2) can be written in the form

G(Z,f)= 0, and G is a smooth mapping from (X O n+1 (ya,n+) 2N) x Yon

a,n 2N+1
into (Y Moreover, the linearization DzG(0,0) is the mapping

N 2K.
(y'y.,6.)- (-.Way+ '(-Y.- 6 .) + x 'Y +- h(y-+

1 ~ ~ ~ ~ ~ ~ j i.11 i i i 6 .

K.
. (Yj-6))" According to lemma 2.2, the y and 6 components form an

1 o (,n+1 2N 3,n 2N
isomorphism from (Y ) onto (Y . Moreover, the mapping y + y

c~n~l o,n
is a bijection from X on Y . Therefore DzG(0,0) is an isomorphism

c,n+l a ,n 2N a,n 2N+1
from X x (Y onto (Y The implicit function theorem

yields the result.
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Global Behavior of Solutions for Large f

Theorem 2.4. Let p > 0 and f: R + R be continuous and such that

-at
lim e f(t) = 0 (0>0 is as in Theorem 2.3), f(t) = 0 for t ) t . For
t +- 0

every such f, equation (2.2) has a unique solution satisfying lim y(t) = 1,

K
1

lim y i 6i = -. This solution exists globally for all times t,
t+-w t+- 1

and lim y(t) exists and is strictly positive.
t++-

Proof: If t1  is chosen large enough, e- tf(t) becomes small on (--,-t 1

and one can use an implicit function argument analogous to theorem 2.3 to

prove the existence of a solution on (--,-t ). This solution is unique in

the class of solutions approaching their limiting values at t = -w at a rate

at
of e . However, if a solution tends to these limits at all, it can be seen

from the last two equations of (2.2) and the implicit function theorem that

0tyi and 6. tend to their limiting values at a rate of e . The first

equation then implies that y approaches its limiting value at the same

rate. Hence the solution is actually unique in the class of all solutions

approaching the prescribed limits at t = -- as claimed in the theorem.

We now continue this solution to the right, and we have to make sure that

it does not blow up at a finite time. For that purpose it is more convenient

to consider (2.1) rather than (2.2). From the second and third equation we

see that as long as y stays positive, gi and hi have a positive lower

bound for all finite times, which is independent of y. Hence, if y becomes

3 (too larae, qiy  will dominate over fya and also over h i  (Since thin i

less than some constant times max y(T)). Analogouslv, if y becomes too
(-w,t]

small, hi will dominate over fy c and qiy 3 . Hence v -.annot q to zero

or infinity in finite time, whence we find (lobal existence.



Let now t > t0 . Then f = 0, and using (2.2) again, we find the

Liapunov function

N
1 -- K. Ki

(2.4) a i + X i X
i

N Xi 2 a2

ax + i 8 i- (a -8
i= 2 

K. 
K 

2

Ci + --I S +-

K. K.

1 1
K. K.

stay positive, the denominators a. + i + are always positive, and. i + . aeawy oiie n
1 1

the left side of the equation (2.4) is thus the derivative of a positive

definite function that decreases along trajectories. As an immediate

consequence we obtain that ai and ai  tend to 0 exponentially for

t -. one easily concludes from (2.2) that kn y approaches a constant,

and hence lim y(t) > 0 exists.
t +<

The next corollary provides information on the final recovery for

physically significant forces.

Corollary 2.5. If f is always non-negative and not identically zero, then

y(-) > y(--), if f is always non-positive and not identically zero, then

y(-) < y(--).

Proof: Assume f ) 0, the other case is analogous. It is immediate from the

integral equation (1.1) that f ) 0 implies y ) 1 for all t. Moreover, if

f 0, there must be some t such that y(t*) > 1. Let now z(t) =

min y(T). Then (1.1) implies that

Tert ,t]

-10-



C-1 z(t) >min (0,- ft.' a(t-s) (z3(t)-i ds)
it 3

-f- a(t-s)(z3(t)-1)ds .

If z(t) - 1 is sufficiently small, this gives an inequality of the form

[d-] + z(t) > - Ce-kt (z-1) .
dt 4

It follows immediately that lim z(t) > 1.
t +-4

Remark: These results are obviously expected on a physical basis. Namely,

they simply state that pulling the filament effectively increases its length

(f > 0, a = 2) or the thickness of the sheet decreases (f 4 0, a = i),

resp.

We now give an argument showing that theorem 2.4 does not hold, if the

condition that f(t) = 0 for t > t0  is replaced by exponential decrease

of f and a # 1 (in case a = I the previous argument still goes through,
N

the only difference being that f(t) ) (C. - 8.) has to be added on the

right side of (3.1)). We restrict ourselves to the case N = 1. (2.1) reads:

3a

-i = gy - h - f(t)y

=- + -

y

= -h + Ky

We solve these equations for t > n by the following ansatz:

vt -2vt -At h h Vt + h e-At
y y 0 e , g =gve g h -e

(1-a)vt 3-a ((3-a)vX-)t -a (-au-A)t
f =foe + gly0  e - hly0  e

-11-



After some calculation one finds that this satisfies the equations if

K Ky0
g 2 ,' h = - and

YO ( X-2v)

f-1 3vK + pv(X-2v)(,+v)
f 0 Y0  = (X-2v)(+v)

We thus find solutions where f goes to zero exponentially, but y + fcr

a > 1 and y + 0 for C < 1.

All we have to make sure is that by appropriate continuation for t < 0

we can match the conditions at t = --. For this purpose continue y in an

arbitrary way to the left such that y is smooth and approaches 1

exponentially at t = --. The equations for g and h then have unique

solutions approaching for t + --. These solutions can be matched to the

solutions for t > 0 by appropriate choice of g, and hl. Finally f is

determined by the first equation.

-12-



The Case =-O

In this case the first equation of (2.1) becomes

N N
3 9,- h. - f(t)y = 0

i=1 i= 1

Proposition 2.6. For any g > 0, h > 0 and 0 < a < 3 the equation F(y)

gY3 
- h - fvla = 0 has a unique solution in (0,-).

Proof: We have F(0) < 0, lim F(y) > 0, so there is clearly a positive
y+

solution. To show it is unique, we investigate zeros of F'(y). We have

F'(y) = - afy s -1 If y > 0 and F'(y) = 0, we find F(y)

1 yF'(y) + y3 (1 - 3)g - h < 0. This means F cannot have a positive
a a

maximum, whence the result.

The solution y(g,h,f) can then be inserted into the other equations,

yielding a system of 2N equations.

Theorem 2.7. The same statement as in Theorem 2.4 holds also for p = 0.

Also, Corollary 2.5 still holds.

Sketch of the Proof: The existence of a solution on (--,-t I ) and global

existence in time are proved in the same manner as before, and we do not

repeat the arguments. If f = 0, one finds from (2.2)

yi = -Aiy, + K, + 2 y,

1 ii .z i y
6. -A 6.+ K. - 6. X

This leads to

2 2
N a a. N )~a.A. * N

V ]=-)' ( + 1 + Y ' (. -
' 2 K. K. K. K. V .

i=1 1 I i=1 1 +

i R .+ 1

where a. and Q. are defined as before.

-13-



Since I(ai - 8i ) is now equal to zero, we still find that a, and
i

approach 0 exponentially, whence the result.

For the corollary, observe that

(t)'3 2(t ft a(t-s) = - a'(t-s)t - y(s)Ids
2 O2 2y2(S) y (s)

Using this, one can apply an argument analogous to the previous one.

Finally, we want to prove that solutions depend continuously on p, even

at j = 0. Let f e YO,n be given such that it either has a small norm or it

satisfies the conditions of theorem 2.4. We know that a unique solution y(t)

satisfying y(--) = 1 exists both for j = 0 and for 4 > 0. In (2.1), we
N N 3 h

put g = gi h = L hi ' and z = y -(for 0, f 0, the first
i=1 i=I

3h
equation of (2.1) is solved by y = -. We obtain

-P; g3 + z)3 - h- f(t)(I/ ' + a + 3- /
g, chg dt Vg

K
+ - ii

(2.5) . z

1 ii j( a

As we have proved, there exists some p0 > 0 such that for every p e [0,( 0

system (2.5) has a unique solution in the Banach manifold
K. K.3 1u• ~ 3 y,,

M = {(z,g.,h )1z e y0,n, g 1 e Y ' h - -i /e Y h} In
n 1i 3 hi X~ vq

. 2
i 2

particular, let z0, gi,' hi,0  denote the solution for p = 0.

Linearizing at this solution (or likewise at any solution for i > 0),

we obtain a system of linear ODE's with a matrix approaching a constant limit

as t + -- and t + +-. From a discussion of the asymptotic behavior of

solutions of the linearized system for t + t-, one 2an easily see that for

-14-



any inhomogeneity in (Y n) n there is a unique solution in the tangent

space of Mn . The argument parallels our existence proof for solutions:

First consider the problem on (--,-T) with T large, where the matrix is

approximated by the linearization at the trivial solution. Continuation of

solutions for t > -T presents no problem, since the equation is linear, and

finally the behavior for t * +a must be discussed. We leave the details of

the analysis to the reader.

Thus the linearization is a densely defined bijective operator from the

c,n 2N+1
tangent space of Mn onto (Y,)2 . It is thus natural tc attempt proving

the existence of a continuous family of solutions in a neighborhood of U = 0

using the implicit function theorem. One does, however, face the problem that

the term pz represents an unbounded operator.

The first equation of (2.4) has the form

d
-i t (Z-Z 0 ) = p(t)(z-Z0 ) - f(t).L(h-h0,f-f 0 ) + nonlinear terms +O(P)

00 02

where p(t) = 3g0  + h 1 is positive and

go g
N Ki

converges to ' ). for t + t . L is linear in its arguments, and the term

0(V) does not involve any unbounded operators, after the second and third

equation of (2.4) have been substituted into the first to replace g and h.

d -1 ya,n yo,n
It is easy to show that the operator (i i + p(t)) : + Yc is

strongly continuous with respect to V. Denoting V = (z-z0 ,gl-gl, , ...,

N-N,0h-hj,...h N-h N,0), we can thus rewrite (2.5) in the abstract form.

(2.6) L(li)V = N(p,V) <==> V - (L(j))- N(lj,V) = 0

where L(U) has a strongly continuous inverse and N(0,0) = 0, DVN(e,0) = 0.

The existence of a continuous solution V(") now follows from the

following theorem.

-15-



Theorem 2.8:

Let X,Y and Z be Banach spaces, U a neighborhood of (0,0) in

XxY, and F; U Z a mapping having the following properties:

(i) F(0,0) = 0

(ii) F is continuous

(iii) F is continuously differentiable with respect to y for each fixed

X.

(iv) D yF(0,0): Y+Z is an isomorphism.

(v) D yF is continuous at the point (0,0).

Then the equation F(x,y) = 0 has a unique resolution y = f(x) in some

neighborhood of (0,0), and f is continuous.

The proof of this theorem differs by no means from the standard proof of

the implicit function theorem (cf. [10], [11]), but it is crucial for our

problem that (iii) and (v) are sufficient rather than continuity of DyF in a

neighborhood of (0,0) as usually required. Namely, we can identify X

0,nwith R, Y with the tangent space of Mn , Z with Y,, x with p and y

with V. For U fixed, the term L(j)- N( I,V) depends smoothly on V,

moreover, since lim D vN(V,V) = 0, we also have
U+0,V+0

lim D (LA ) N(U,V)) = lim L()-I D vN(P,V) = 0. Hence Theorem 2.8

tj40,V+0 j+0,V+0

applies to (2.6), although the standard form of the implicit function theorem

would not. This yields a continuous solution V = V(p).

Moreover, the mapping (p,z) - (0 - + p(t)) z is a Ck-mappinq from
dt

c,n it a,n-kR x Y into Y From the followinq theorem, which was also provedI in

(101, (111, one concludes that V(,) is actually a Ck- function of p when

0,n-k
reqarded as lying in Y

- 16-



Thporem 2.9:

Let y(k) and Z(k) resp. (k=3,1,...N) be two hierarchies of Banach

spaces such that Y y(k+1), z(k) Z(k+1) the imbeddings being

continuous. Let X be a finite dimensional Banach space and F a mapping

from a neighborhood U of 0 in X Y (N ) into Z(N) having the following

properties:

Mi F(U n (Xxy C Z( k ) k=0,1,....N

(ii) For each fixed k, F :=Fk satisfies the conditions of
U n (XxYf )

Theorem 2.8, when it is considered as a mapping from XxY ) into

z(k). For x fixed, Fk(x,.) is a smooth (i.e. sufficiently often

differentiable) mapping.

(iii) F: XXY(k ) + Z~k +m ) is of class Cm  for each k=0,1,....N and

m ( N-k.

(iv) The mapping (x,y,ul,...,u j) + z Dxi y j F(x,y)(u
1 , ... ,uj ) is

continuous from X x y (k) X (y(k) into Ci(xy(k+i)).

The., the solution y = f(x) e Y(O) existing by theorem 2.8 is a Cm-function

of x in some neighborhood V. of 0, if y is regarded as an element of

y(m).

We summarize our results in the following:

Theorem 2.10:

Let f e y,n be given such that either f has small norm or f(t) 0

for t greater than some t0 < -. Then, for each U e O,w1, (1.1) has a

unique solution y satisfying y - I e X ' . In the limit - 0,

y - I e X (I'n depends continuously on D, and it is a Ck-funrtinn o

(1, n-k
when reqarded as dwelling in X

-17-



3. The Discretization Scheme

When solving (1.1) numerically, one faces the problem that it is to be

solved on an infinite interval. A reasonable way of doing this is to cut at

-T << 0, and replace y(t) for t 4 -T by its limit lim y(t) = 1. We
t

thus obtain the approximating problem

TT3 t _T

Y-T + LOD a(t-s)ds • (yT (t)-1) + ft a(t-s)- yT(s))ds -

(3.1) Y-T (s )

- f(t)y a(t) = 0

(3.2) yT (t) - 1 = 0, t < -T .

On the finite interval the integrodifferential equation can now be discretized

in a straightforward manner. Like Nevanlinna [81, we use a first order

implicit (Euler-type) method, because for this simple procedure we can prove

that the qualitative properties of solutions of (1.1), such as exponential

decay at infinity and uniform convergence as 0 + 0, carry over to the

discrete problem. Since these properties are essential for the continuous

problems it is very reasonable to require that the computed approximating

solutions exhibit them too. Our computations have shown that good

approximations can be obtained with quite large mesh sizes, and so the

computational effort for the first order scheme remains reasonably small.

We choose mesh points t. = ih, i e Z, where t-m = -T, and denote by

Yi the approximation to y(ti) (or, respectively, to yT(ti)). Then our

discretized form of the equation reads

yi-Y_ i t 3 i 3

+ f_- m a(t -s)ds - (y-1) + h 7 a((i-j)h)(-- - yj -
( j=-m+1 y2

(3.3)

- f(ti)y. = 0 , i > -m

-18-



(3.4) Yi- 1 = 0 i < -m

Obviously,

t N K X (t m-ti)
(3.5) a(t -s)ds - - e

Equation (3.3) has the form

(3.6) c y + ya+ c Y, = c

where the c's depend on i, h, t m, ti  and vj, j < i.

The analysis of the discrete equation will be carried out in the same

sort of spaces as the analysis of the continuous equation. We therefore

define discrete analogues of the exponentially weighted spaces introduced in

Definition 2.2.

Definition 3.1:

Let = f = (f). e Z Ilim f, =: f exists,
h i j=-00 1 00

ich -ichf
lim e Ifi-f1 0, lim e I i = 0}

C A ioh - i dand = (gi) i = - 0e o IIim eihgi = lim e ig. I = 0) . The
ji+00 i +- 0

natural norms in these spaces are

0 = sup e fi-f I + sup e- ich if + If.1
X i>O i oxh

and

ih -ioh4gH = sup e i + sup e gi I

y i>0 i 400h

Setting A = (Yi-1) , we rewrite (3.3) and (3.4) in the abstract form

Ee
Equation (3.6) will be discussed at the end of this chapter.
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A

(3.7) F h,m(Z) = 0

Now let f e Ycn (a > 0, n e N) be given such that the assumptions of theorem

2.4 hold. It is an easy exercise to show that, for any e e [0,a),

(3.8) F : X Y
h,m h h

(we explain below why e is introduced).

The aim of the following analysis is to prove that (yi)i=_. converges

to (y(ti= in the topology of X . The proof will be based on

Keller's [3) nonlinear stability-consistency concept.

Let us first show consistency. The local discretization error

z )i=- . is defined by

(3.9) tF h,m((Y(t i ) - 1).=_ ) •

For f e Y (which implies Vy e Y , uniformly in W), we find, using

the exponential decay of y as t + + , that in the limit t - , h + 0-m

-alt. I
(3.10) (a) I. I o(1)e -M

1

y(t. ) - yt )-alt. I
(b) lUi h - ltY'(ti = const. o(1)he

(C) If _'m a(t.-s)ds. (y 3(t,) 1)- t_m a(ti-s)[ ( 1 y(s))dsl
- O 1 y2(s

4const, o(1e 2tM- )

3(

y 3(t.) t. y 3 (t.)
(d) a((i-j)h) y(t - 1 y(s))s

S2(t )-m V (S)

< const. of1)he

H{ere o(l) stans for a factor that vanishes as t. . Therefore,

-20-
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-Olt I -Olt i-2tm I
he +e i> -m

(3 .11 ) I i 1 1 con st. o (I ) e Ol t I -ioti

From definition 3.1 we conclude that

(3.12) OUR 4 const. (h + o(e ))

The constant is independent of h, t_m, 0 < , 0 4 E 0 < a. Note that,

in particular, the error estimate contains a term o(e ). The reason

for this is that, when approximating (1.1) by (3.1), (3.2), we have replaced

f by 0 for t 4 -T, and in the norm of y0 a,n this introduces an error

of the order o(e- cT ). This is the reason why we have introduced the c;

for e - 0 we would still get convergence, but no estimate for the order.

(3.12) settles consistency.

For the stability analysis, we calculate the Frechet derivative of Fh, m

at the exact solution (y(t) - I).=_, which is denoted by

(3.13) Lh' m : =D Fh,m ((y(t)- 1) = -  )

A Oa-CFor = (u). e Xh  we obtain
i-=-21-

-21-



Ui , i -m

ui-ui I  t ti2
h + 3 fL.O a(t.-s)ds y(ti) ui

2(
i y (t.)

(3.14) (Lh,mU) i  + 3h( I a(i-j)h) 21 )uij=-m+1 y t.)J

3
i y (t.)

- h I a((i-j)h) (2 3 + 1)u,
j=-m+1 y (t.)

- a f(ti ) y(t.i ) -or,1 i > -m .

Stability means that L1 exists and that it is bounded as an operator fromh;,m

0-6 into Xh-E uniformly with respect to h, tm, W and 0 < c < CO < 0.

A
Therefore we look at the equation LhfMu = v for v = (v*)e=- e Yh

For i < -m we find ui = vi , and for i > -m we show that

t2 i-I y (t.

G (h,-m,) = + 3 a at.-s)y (t.)ds + 3h a((i-j)h) 2

(3.15) j=-m+ v(

- a f(t.)v -1 (t.)
I I

which is the coefficient of ui in (3.14), is bounded away from 0

uniformly in h, tm and .

It is easy to show that

t.i Y (ti) ~
G (h,-m, j) =P + 3 1a(t.-q) i (s - a f(t v -1(t.)

h - I t 2 (s - a f. t i t(3. 16) y s)

-o( it . 'i t I)
+ 0(h) + o(e 1 -Mf
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Using (1.1) we get

t.

G (h,-mW) 3 1 a(t.-s)y(s)ds - wy(t.) +
1 h y(t) '- 1 1

(3.17)
-o(jtijltItm)

+ (1 _ _)f(t)ya(t. )) + O(h) + O(e 1 I

3 1

It follows from chapter 2 that

(3.18) 0 < Y0  - y(t,P) < YO, ly(t,p)l <

uniformly for j e [0,-). For f < 0, (3.16) provides a uniform lower bound

for Gi, and, for f ) 0, (3.18) provides a uniform lower bound, since

a < 3.

The preceding considerations make it apparent, why the term
t

-M a(t.-s)ds(y. - 1) should be maintained in (3.3). if this term were

neglected, the uniform bounds on Gi would no lonqer hold, and, unless a

constraint of the form 2 > const. is imposed, an artificial boundary layer
h

can be -enerated at t-m we see from the above that Lhm can formally be

inverted. It remains to be proved that the solution u of

(3. 1 Lh'mU = v

satisfies an estimate

f3.20) 11un 1C const. 11V 11

with the constant independent of h, tm, L and E.

WP hP(in with the reduced prohlem for w = 0. (3.14) yields

i-I 0

(3.21) = h ' a((i-j)h)i. (h,-m)u. + v.

jl- 1 1, 1 1
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where

y3(t. )

2 143.1i
3

y3(t.) 0 v.

(3.22) a. (h,-m) = G.(h,-m,0) ' v__ =  _

322)1, G,(h,-mO) v, G.(h,-m,O)
1 1

with Gi  as defined in (3.17). Since y(-1) = 1, this implies, after a

simple calculation

ai,j (h-m) N K + = C(h,y)

h X £
e -1

where y + 0 as h + 0, t + -M, t. +-m i

Using the form of a, we get from (3.21)

i-i N -x 9t -t.) 0
(3.24) Iu.1 ( C(h,y)h I K e lu I + Iv.I

1 j=-m+1 :

The solution wi of the equation obtained by replacing Ivil by the
i ( cy- E)hll

larger quantity e lvII . where
z

S ( O-c)h - - -0

(3.25) v e v., v = (vi) e £

provides an upper bound for Iuil. In analogy to chapter 2, we substitute

i-I -A C£ti-t.)
(3.26) g_9 K K h P ze w., = 1, . . .N ,

j=-m+I

which yields the difference equation

-24-



£~ £ lh -lhI

(3.27) gi+- gi K I he wi + (e g

and the following difference equation for wi

N -Xxh I N -X h
wi+ I -Wi = C(h,y) I (e -1)g i + C(h,y) I K he w

X=j 9 = 1
(3.28)

+ (e( -)h-) ei(O- )h v,
't

(3.27) and (3.28) form a system of difference equations. Setting

1 N(a-c)h i( o-c)h
(3.29) z, = (wi ,g,....gN), i = ((e( - 1) e i - h vU ,.... 0)

i i i

we can rewrite this system in the form

(3.30) zi+ I = (I + A(h,y))z. + . i ) -m1 1

where

C(h,,y) ) K he C(h,y) (e -1 ) .... C(h,y) (e - 1)

K1he 1 1 1K1h e

(3.31) A(h,y) =

% he 
- 1

-25-



The solution of (3.30) is given by

i-I

(3.32) z i  (I + A(h,y)) i -+mz + [ (I + A(h,y)) i-j-1
j=-m

with the initial condition Z-m+1 = (e mvU 0,...,0).
.

The goal of the following analysis is to show that

-i( a- O)h z

(3.33) sup e Uz 1 1 const Uvff
i<0

which implies

(3.34) sup e (0E)h lul < const. sup e- (Oh IviI
i40 i 40

Summing up the geometric series in (3.32), we obtain the estimate

0

S cII(I+A(hy) ) ()i+m- 11 + I iiv

1 e ( i+m-1 ) (a-E)h+

(3.35)

(1 -h
(e

(- € )
- 1) II1,I I+AWh')( €h I

Le J

We thus have to prove estimates of the following form

(3.36) (ah,) ( 1 4II const., k E N

e

and
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(3.37) e(o-e)h _11 HI - I+A(h,Y) ( con-t.
(a-0)he

Both will follow from an analysis of the Jordan form of A(h,y). For h,y

small enough we can write

(3.38) A(h,y) = h(!- A(0,0) + O(h) + 0(y))
dh

where

NC(0,0) I K£ -C(0,0)X 1t... -C(0,0) '£N

X= I

SK1  -x'

d0
d A(0,0) =

.h 0

KN *XN

This matrix has the characteristic polynomial

N N X K
(3.40 ) p(p) = C(0,0 ) Y - 0- c(,o ) Z Z

2.= 1 £ £

N K -

Recalling that C(0,0) = X - it is an easy exercise to show that the
Z=1 Z

root 0 is two fold. An analysis similar to that given for (2.3) shows that

all remaining zeros are real and negative.

A similar calculation shows that zero is also a double eigenvalue of

d
d- A(0,0) + O(h) (as of (3.38)). Therefore we get for the eigenvalues of

A(h,y)

(3.41)(a) P1 (h,y) = ho(1), p2 (h,y) = ho(1) as y + 0

(3.41)(b) P i (h,y) = h(p i  + o(1)) as h,y + 0, i = 3(l)(N+I)

-27-



where p < 0 for i = 3(1)(N+1) such that

(3.42) 1+ i hY

holds. Equality in (3.42) only holds for h =0. Since 1 A(h,0) is
h

holomorphic in h =0 and since the eigenvalue cf I A(h,0) do not change
h

multiplicities as h + 0 (the negative eigenvalues of - A(0,0) are
dh

distinct and Gi is a double eigenvalue of -1A(h,O)). There is a matrix

G(h) such that G(h), G-(h) are holomorphic in h = 0 and J(h) defined

by

A(h,0) = G(h)J(h)G- (h)

is the Jordan form of A(h,0) (see [2)). Therefore (3.36), (3.37) hold for

y = 0. A simple perturbation argument assures (3.36), (3.37) for -y

sufficiently small. Thus for h sufficiently small and K > 0 sufficientl~y

large, we have proved that

_t ((3- C)
(3.43) sup e Iu 1 1 const Nlvi

The solution u i can be continued over the finite interval [-K,O) and by a

standard stability analysis (see [1)) we obtain (3.34).

We now have to treat the case t ) 0. For this, we rewrite (3.21) as

U= h a((i-j)h)cLi' (h,-m)u 3
j=-m+1 l

(3.44)i-

+ h ~'a((i-j)h)ci ,(h,-m)u.i + v.

iJj*i

where it is assumed that ti K is safficiently larqe. After some
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calculation, we get from (3.15), (3.22).

(3.45) aj(h,-m) = D(h) + a ij(h,-m)

where

(3.46) D(h) = I; i(h,-m)l =O(e ), t. )K(34)N K 9. i,)t
h~

e -1

It is therefore natural to study the equation

i-I

(3.47) ui - D(h) [ a((i-j)h)u. +
j=I

where vi is vi plus the first sum in (3.44), and interpret (3.44) as a

perturbation of (3.47). As before we put

i-I - x(t -t j )(3.48) g9£ = K 9h I e j.

j=I 3

which leads to the difference equation

-~ X hh

£D(h)e yxh z-K.  2 NqJ + (e - 1)q.£gi+l - 9i x K Dhhe j= q i + e1q
J=1

(3.49)

+ h K e v.

Here the relation

N
(3.50) u. D(h) I g+

has been used.
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,- -r1

1 N X 1h - X h

Putting gi - (gNi' g ), e(h) = (K1e , .. KNe ), we obtain the

following matrix form of (3.49)

(3.51) gi+1 = (I + B(h))g i + v h.e(h)

This has the solution

i--

(3.52) g. = h I (I + B(h)) i- j- I v.e(h)
j=I I

When dealing with the case ti < 0, we used a 'redundant' system of equations

rather than an analogue of (3.49). The reason for this was that it is easier

to compute the characteristic polynomial of the matrix of the 'redundant'

system. In the 'redundant' ((N+1)-dimensional instead of N-dimensional) form

(3.49) reads

N -X h N -Xh
u - U = D(h)h , Ke ui + D(h) (e - 1)gi

2.1 2X=1

(3.53)
+ v.i - v "

1+

X. X -Xh -Xh

- g2 = K h e u + (e - 1)g1i+- 1

When we write this in matrix form

(3.54) ;i+ = (I + A(h))z. + d

I1 1

(where z. = (ug.... ), di = (v i+1- vi, 0,...,0)), we see immediately

that A(h) is the same matrix as (3.31), except that C(h,y) is replaced

by D(h). The characteristic polynomial is

-X h -X h
N - Xh N e X (e X _ )

(3.55) q(p) = D(h)h I Ke + D(h)h Kh2.=1 2.  . -= ~~ I' K . e C 1
X==1 p-(e - 1)

It is easily verified that p = 0 is a double root. Moreover, since
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Ir

(3.56) D(h) = C(0,0) + O(h)

the other roots are small perturbations of those of p(p) as given by (3.40)

and have therefore negative real parts. When passing from A(h) to the N-

dimensional matrix B(h), the eigenvalues obviously remain the same, except

that 0 as an eigenvalue of B(h) has multiplicity one rather than two.

Hence there is a matrix E(h) such that E(h),E-1(h) are continuous for h e

[0,h 0] and the Jordan form J(h) of B(h)

(3.57) J(h) = E- (h)B(h)E(h)

has the block form

(3.58) J(h) = 0 J_(h))

0

where the (N-i) x (N-1)-matrix J_(h) has only eigenvalues with negative
1

real parts. The continuity of E(h),E-1(h) holds since 1 B(h) is analytic
h

in h and since the eigenvalues of - B(h) are distinct even for h = 0
h

(see [2]).

If we put qg = E(h)wi' (3.52) yields

i-1

(3.59) w. = h Y (I + J(h)) i- - 1 v E-1(h)e(h)
1 j=I

In the first component this reads in particular

1i-i
(3.60) w = h / V (E (h)e(h))

j=I

From this we obtain the following estimate for t T +:
-
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lim Iwi 1 const sup e Ii

(3.61)
i( O-e)h 1 1 i(o-E)h-

sup e w1 - lim wi const. o() sup e vi
i) i+ i)I1

2 N
For the components (w ....w ), where only eigenvalues with negative real

parts are involved, an analogous estimate follows from the same arguments that
£

have been used in the case ti < 0, and we even have lim w. 0 for

> .

Let us now introduce the spaces

0- = = () lime i( f)h = O}

i( 0-E)h

B - E = {f = (f ) I lim f. = f exists, lim e a fI-f I = 01
h, ii= i iI

and the operator

(3 .6 2 ) P (h ) : , B , O E

which is defined as the solution operator corresponding to (3.47), i.e. the

operator mapin to (uWe w u

(3.63) (Gu)i = h [ a((i-j)h) i j(h,-m)u.
j=I

(3.44) can be rewritten in the form

(3.64) u. = P (h)(Gu + v) , i ) I

It follows from (3.61) that PT(h) is a hounded operator. Moreover, (3.46)

implies that G has small norm. Therefore, I - PI(h)C is a nonsinqular

operator from N, into B,, and the norm of the inverse is bounded

uniformly with respect to h, t_m and c. Therefore,
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(3.65) sup e i(-hu i - lim u I + Ilim u t I cIN
i > 0i i i + 0-E

and, summarizing, we obtain

(3.66) U 1 < const nVI

where the constant is independent of h, tm and e e [0,eo], where

co < a. This concludes the stability proof for p = 0.

We briefly sketct the stability proof for U > 0. Equation (3.19) now

takes the form

U i- U_ i-Iy ti
h (h-m)u + h a((i-j)h)(2 ( + I)uj + v

(3.67) j=-m+1 y (tj)

i > -m

where

t i-i y 2(t.)
H (h,-m) = L3 -m a(ti-s)y (ti)ds + 3h a((i-j)h) 2j=-m+1 y2(t.)

(3.68)

- t. y - (t
1

With D(h) as in (3.46),

3O (e' ast +
( 3 .69 ) H (h ,- m ) = - a s t

i D(h)

O(h) + O(e 1) as t. -
1

We can therefore use a similar perturbation approach as before, i.e., for

t, + -, (3.67) is reqarded as a perturbation of the problem

U i-i 3 i-I
+ 3h +

(37, h - -P~---[ ui +  h a((i-j)h)u. + v(3.70) 
j=-m+1 I

This can be rewritten as follows



1-2
(3.71) y = y(h,1)ui + 6(h, )h I a((i-j)h)u +

where

3 1 3
y (h,V) ( - + 3ha(h)) h+ 3 6(h,) = 3 (i +

We substitute

i-2 -A (t -t.)
gi- 1 h ,

j=-m+ 1

(3.72) N -xh

z-1 e gi-1"

I£ -N
£= 1

We set W= u,zi,gi,...,g ), p = ((h,)( - vi 1  0,...,0). Then

(3.70) is equivalent to the system

(3.73) w. = (I + F(h,p))wi I +

with

y(h,u) - 1 6(h,u) 0 . . . . .

N -2Xh -xh -Xh - xvh -XVh
h K e 0 e (e - 1) . e (e

(3.74)

-Xlh -X.1h

F(h,) = h Kle 0 e -1

0
0

h Ne 0e h_ 0
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As before, it can be shown that the characteristic polynomial of D hF(0,p)

has the same roots as (2.3), except for the fact that 0 is a double rather

than a simple root. Moreover, 0 is an exact eigenvalue of F(h,W).

A proof analogous to the one for p = 0 shows the stability for w

fixed and sufficiently small h. For the limit V + 0, a different argument

is needed. When we substitute in (3.73)

+ 6(h,p) - -(3.75) u + ,,)- zi = Pi " zi = q

we obtain a system of difference equations of the form (3.73) with F(h,W)

substituted by a matrix of the following form

= y(h,1j) - 1 O(h)

(3.76) F(h,p) (O(h) h 1 h A(0,0) + O(h2)

dhh

Moreover, an estimate of the form -1 4 y(h,p) - 1 4 -w min(C1i,C h) holds
2 1

where w > 0. Thus for small U, ly-11 >> h. It is easy to conclude from

this that there is a coordinate transformation close to the identity which

transforms F to the form

(7F (h,jj) - 1 + 0(h) 0
(3.77) F= d

0 h h A(0,0) + o(h))

Stability follows from the above estimate for y - I and an analysis of the

eigenvalues of - A(0,0) given by (3.39). For ti + -W a similar argument
dhi

holds, but D(h) is to be replaced by a different constant D(h,t ). From-m

these considerations we see that

-1
(3.78) IILm a-E < const.

Y h +

LOW'.-- 
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with a constant independent of h, -in, p and c e [O,e 0, 0< 0 .

It is practically important to assure stability not just for h

sufficiently small, but also for arbitrary h. Recall that linearizing
-X h 1

e - with respect to h is only justified if h << . The matrix

F(h,1) for arbitrary h has the same form as for h small, if the

-Xih -2Xh
e - I I

following substitutions are made: Xi + h , K + K Xe ,

3h
+ 3h If f has compact support, this is sufficient to ensure

stability. If the support of f is not compact, stability for arbitrary h

can be assured if the following modification is made: In (3.3) the integral

t. -m
_L a(t.-s)ds is replaced by h * V a(t.-t.). With this modification

the term O(h) in (3.69) vanishes, and thus the matrix for the linearized

problem is asymptotically equal to F(h,11) both for t. + - and t, - .
1 1

In order to apply Keller's [3) nonlinear stability concept, it is further

necessary to show that the Frechet derivatives DF are uniformlyz h,m

Lipschitz continuous in a sphere

S ( -e Xh 1 - (y(t.) -1) 1 < K
K h 1 i-

This follows from a fairly trivial calculation, which we do not oresent lir-.

Using the fact that the global error (y(ti) - Yi)i is estimated by

constant times the bound for the local error (3.12), we obtain the follirwin

theorem:

Theorem 3.1

The discretization scheme (3.3), (3.4) has a unique solution for a1ll

f 0 X where u is a,; of Theorem 2.3, this solotion Y (Y _ 'in

ho ralculated by the 1ewton nroedure whi-h is second order converent firm



sphere of starting values which does not shrink to 0 as h + 0, t M +-m

i + 0 and the convergence estimate

-e(t )
(3.79) 1(yi  - y(t. )). 11 const (h + o(e ))

1 1 = -  0-C

holds for h sufficiently small and Jti I sufficiently large. The constant

is independent of h, t_m, j e [0,-], E e 10,C], E0 < o.

This implies that the Newton procedure for the solution of (3.6) can be

safely applied, that the (yi)i=_ do not exhibit boundary layer-like

behavior and that

( 0-s)t -sit I
(3.80) lyi - y(t.iH 4 const. e (h + o(e )), t. 0

-sjt I
(3.81) ylim yi - y(o) l < const. (h + o(e -M

i 1-

-( o-s)t. -Elt
1 -m

(3.82) l(y i - lim y.) - (y(t i ) - Y(4)I ( const. e (h + o(e )) t' 0

and the order of convergence is independent of tj e [0,-J.

Obviously if f is only supported on [T,T 2], then the term

O(e ) disappears from the error estimate if t_m < T.

The discretization we used was derived from the integral equation. In

chapter 2 we transformed to a system of ordinary differential equations. In

fact, up to terms of order O(h), our discretization method corresponds ',) a

discretization scheme for the ODE system (2.1). Namely, if we put

-X (t -t 1
qli h Kze 2 m

3' 0
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i -( ti-t
h = h = KZe yj ,hx,m = 0

j=-m+ 1

our discretized equation reads as follows:

yi-i-1 N -A 2h3
-U( h I e (g ,i-1yi - h ,i_ 1Z=1

(a)
t

fa + f a(t.-s)ds(y - 1)

(3.83) -A h
g ,i-£, i- K£ (e - 1)

(b) h+ hh 2 h ,-I
yi

h -h e- A Xh_1h£,i - £,i-1 Ce 2.- 1)

(c) h = K Yi + h h ,i-1

By calculating gk,i' h£,i for X = 1(I)N from (3.83)(b), (3.83)(c) and by

inserting these quantities into (3.83)(a) an equation of the fot, (3.6) is

obtained (in each time step). Theorem 3.1 now implies that the root of this

equation can be safely obtained by the Newton procedure which is second order

accurate from a sphere of starting values whose radius is independent of h,

t-m, I e [0,-) and i > -m.

This provides us with a very efficient method to solve the approximating

problems and Theorem 3.1 makes sure that the qualitative properties of the

solution of (1.1) carry over to the approximate solutions.

The exponential decay of the solution encourages one to attempt using

variable mesh sizes of the form

^ -aItil

(3.84) h = he
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It can be expected that convergence of the order one in h, i.e. the

^ -altm I
estimate would be 0(h) + o(e ) , would follow in I. but the

exponential decay property of the approximate solution would be lost. In the

case of boundary value problems for ordinary differential equations on

infinite intervals this has been shown in (7].

A further problem that should be mentioned is which higher order

discretization schemes could be employed. It is fairly clear from our

analysis that polynomial collocation methods using Radau points (see [12])

could be used and the exponential decay property and the uniform convergence

as V + 0 would be recovered.
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4 Numerical Results
8 -u

For the computations we used the kernel a(u) = K.e with the
i=l

foilowinq constants K. and X.
1 1

1

ii

10- 3  X lo 10 3

2 10 - 2  1.8 x 100

3 10-1 1.89 x 102

4 1 9.8 x 10 3

5 10 2.67 x 10 5

6 102 5.86 x 106

7 103 9.48 x 107

8 104 1.29 x 109

These numbers were obtained by Laun [4) from an experimental fit for a

polyethylene melt at 150 0C, which he calls "Melt 1".

The parameter u is physically identified as three times the Newtonian

contribution to the viscosity. Experimental values are not available, and

theoretically W is either a solvent viscosity (for polymer solutions) or it

results from fractions of low molecular weight (for melts). The vailf, of

has to be compared to the viscosity resulting from the memory, which, for
A

constant shear rate, is given by KX 5000 Nm- 2 sec. I)e wonld expo-
iI

U to influence the solution siqnificantly only if it exceeds this valie.
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This is verified by our computations. In the plots the scale for y is on

the left, the scale for f is on the right. y is measured in multiples of

the length (for the filament, a = 2), or, respectively, the thickness (for

the sheet, a = -) at t = -w; f denotes the force acting on the ends of the
2

filament or the edges of the sheet divided by the cross-sectional area in the

N
undeformed state at t = -w, f is expressed in -i. The time is measured in

m
seconds. f is always plotted by dashed lines, y by full lines.

All plots except figures 7, 8 were made for a = 2, the case of the

filament. In figures 1 - 11 (except 6), the force f is of the form

r 0 It )a 2

f(t) = 2

a2 1
max exp{a 0 - 2

a 2-t

2

2 a1with a. - = 0. Such an f is in C (R,R) and has the compact support
2

[-a2 , a2 ]

The parameter V is zero in figures I - 9. In figures 1 - 5 we have

chosen various values of f max' a0  and a,, as can be seen from the

diagrams. The calculations were done for larger time intervals than the

plots, thus yielding approximations for y(-). For figures 1 - 5, the

approximate values of y(-) are as follows:

fig. 1 2 3 4 5

y( )1.07 1.15 1.11 1.2r, 1.11

(in this figure supp f is different from the previous ones)
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These numbers indicate that, roughly speaking, the value of y(-) - 1 is

proportional to fC f(t)dt. This would in fact be exact for the linearized

equation.

In figure 6 an oscillating force was chosen. It is observed that the

solution y "follows" the oscillations with a certain delay.

1
The figures 7 and 8 illustrate the case of the sheet (a = -). Here

2

-f is plotted rather than f. The results are qualitatively similar to those

in figures 1 - 5, but now we have y < 1 instead of y > 1.

In figures 9 - 15, we have again a - 2. In figures 9 - 11, we have

chosen the same f (f max = 40000, a0 = 1, a1 = a2 =20) and computed

solutions for different values of p.

Y max Y(-)

0 103 3.3

105 89 3.4

106  7.7 4.5

For p ( 10000, no significant change was observed. For larger ji, the

effect on the maximal elongation seems to be more pronounced than the effect

on the final length. Recalling the fact that p = 1o000 would correspond to

a viscosity 3 x 106 as large as that of water, it seems conceivable that for

fluids like "Melt 1" Uj can be neglected.

The numbers for y(-) are interesting in comparison with the result! of

Lodge, McLeod and Nohel [6]. They showed that y(-) increases with p, if

the history of y for t < 0 is kept fixed. Our numbers show the sam-
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tendency, eventually, however, y(-) has to decrease, since for j = we

have y = const, and thus y(-) = 1. We see from this that, for fixed f,

y(-) is not a monotone function of p.

For figures 12 - 15, a discontinuous force given by

0 t > 0
f(t) =t

40000 exp(-) t < 0
10

was used. Since in this case the filament recovers freely for t > 0, we are

studying the same situation as Lodge, McLeod and Nohel [61, but we prescribe

the force rather than the history of y for t < 0. By considering the

intervals t < 0 and t > 0 separately, we can easily modify the existence

and convergence theory of the previous chapters for the present case.

However, the solution does not depend continuously on p in the L -norm as

U + 0. This is because for p = 0 the solution is discontinuous at t = 0.

The following table illustrates the dependence of the maximal elongation on 1-

Y max

0 140

2 x 10 58

3.1 x 105 16

106 1.6
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